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Pansharpening aims to sharpen a low-spatial-reso-
lution (LR) multispectral (MS) image using a high-

spatial-resolution (HR) panchromatic (Pan) image to 
obtain the HR MS image. It has been a fundamental and 
active research topic in remote sensing, and pansharp-
ening methods have been developed for nearly 40 years. 
While the performance evaluation of pansharpening 
methods is still based on a small number of individual 
images, data-driven pansharpening approaches are at-
tracting increasing attention. However, few publicly 
available benchmark data sets for pansharpening are 
available, especially large-scale ones. This has been a 
serious limitation for the future development of pan-
sharpening methods.

In this article, we propose a large-scale data set for 
pansharpening. The data set has 2,270 pairs of HR Pan/
LR MS images from different kinds of remote sensing sat-
ellites, including 200 Ikonos, 500 QuickBird, 410  Gaofen 
(GF)-1, 500 WorldView-4, 500 WorldView-2, and 160 
WorldView-3 images. In addition, we construct thematic 
remote sensing data sets, including ones that are typical 

of urban areas, green vegetation, and water scenarios, 
with 510, 258, and 318 pairs of HR Pan/LR MS images, 
respectively. An unlabeled data set containing 1,184 pairs 
of HR Pan/LR MS images with mixed surface features is 
also constructed. Traditional pansharpening methods are 
reviewed along with the current approach, and the perfor-
mance of popular pansharpening methods is evaluated 
and statistically analyzed based on the proposed data set.

BACKGROUND 
Due to the limitations of radiation energy, data volumes, 
and similar elements of remote sensing satellite-imaging 
system, the acquired images require a fundamental tradeoff 
between spatial and spectral resolutions [1]–[4]. For exam-
ple, most of the remote sensing satellites provide bundled 
LR MS images and HR Pan images, rather than an HR MS 
image. Fortunately, pansharpening (typically referred to as 
sharpening MS by Pan), i.e., Pan/MS fusion, can overcome 
this hardware limitation to obtain the HR MS image. Pan-
sharpening methods originated during the 1980s [5]–[7]. 
Since 1986, the Système Pour l’Observation de la Terre-1 (SPOT-
1) system has provided LR MS images with HR Pan images, 
so pansharpening methods have had a rapid development. 
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This development can be divided into three major stages 
motivated by several factors. 
1)	 1980s: A pansharpening theory was proposed, and sev-

eral popular methods were developed. Representative 
methods include traditional intensity-hue-saturation 
(IHS) fusion [6], [8] and high-pass filter (HPF) fusion 
[7], [9].

2)	 1990s: The concept of image fusion was critically dis-
cussed [10]–[12], and multiresolution analysis (MRA)-
based pansharpening methods, especially wavelet-
based ones [13]–[16], attracted growing attention. In 
addition, with the increase in developed methods, re-
view and comparison of different pansharpening meth-
ods arose [11], [17], [18].

3)	 Blowout stage: This occurred after 2000, especially since 
Tu et al. [19] proposed a general fusion framework that 
made a great contribution to the improvement and de-
velopment of pansharpening methods. During this 
period, many state-of-the-art methods based on new 
theories continued to spring up, such as model-based 
methods [20], [21] and sparse-representation-based ap-
proaches [22], [23]. Pansharpening methods based on 
deep learning (DL) [24]–[27] are attracting attention.
To the best of our knowledge, there are several develop-

ment factors [1], including advances in remote sensing sat-
ellite sensors. These advances mainly focus on the variation 
of the number of spectral bands and the difference of the 
spectral range between MS and Pan images. Specifically, 
this variation has evolved from previous MS images that 
had only three bands and Pan images that covered only the 
visible spectrum (such as SPOT-1 and SPOT-2) to MS with 
four bands and Pan covering the visible and near-infrared 
spectrum (such as Ikonos, QuickBird, GF-1) and MS with six 
or more bands only partly covered by the Pan image (such 
as Landsat Enhanced Thematic Mapper Plus, WorldView-2, and 
WorldView-3).

Second, there are relevant newly emerging theories and 
hot-spot mathematical research, such as sparse-representa-
tion-based and DL-based pansharpening methods. The de-
velopment is further motivated by the demands of practical 
engineering and remote sensing applications. For example, 
effective pansharpening methods to obtain HR MS images 
for change detection [28], [29], thematic mapping [30], [31], 
and so forth are highly desirable. It should be noted that 
different applications may have contrasting requirements 
for more spectral fidelity and spatial enhancement. Hence, 
application-oriented pansharpening methods should be 
given more attention.

To date, large numbers of pansharpening methods have 
been developed, and they have been classified in several 
ways. In [3] and [32], existing pansharpening methods were 
classified into two major categories, i.e., component substi-
tution (CS)-based methods and MRA-based ones. In addi-
tion, Zhang et al. [33] classified them into CS-, MRA-, and 
Bayesian-based methods, while Shen et  al. [2] organized 
them into CS-, MRA-, sparse reconstruction (SR)-, and 

model-based optimization (MBO) techniques. It should 
be noted that the major fusion process of the Bayesian-, 
SR-, and MBO-based methods is built on or converted to 
the optimization of a variational model; hence, these ap-
proaches can be generalized into the variational optimiza-
tion (VO)-based methods. Garzelli [34] first performed a 
comprehensive review of VO-related methods based on the 
super-resolution concept. Kwan et  al. [35], [36] classified 
the existing pansharpening methods based on whether the 
point spread function was used or not.

In this article, based on the previous categories, pan-
sharpening methods are classified into four groups: CS, 
MRA, VO, and DL. Among them, the CS- and MRA-based 
methods have been widely used due to their simplicity and 
high efficiency. The CS-based methods, in particular, seem 
to be favored by professional remote sensing software, such 
as Environment for Visualizing Images (ENVI), Earth Re-
sources Data Analysis System Imagine, and PCI Geomatica.
1)	 CS-based pansharpening methods are established with 

the substitution of the LR component of the MS by the 
HR Pan to obtain the fused HR MS image. The LR com-
ponent is generally obtained by spectral transformation 
of the MS image. The development of CS-based pan-
sharpening methods includes two stages: 1) the tradi-
tional understanding characterized by the process of 
forward projection transformation–CS–inverse projec-
tion transformation and 2) the general understanding 
featuring a unified fusion framework without forward 
and backward transformation. The representative CS-
based methods include the classical principal compo-
nent analysis (PCA) method [17], IHS method [17], [37], 
and Gram-Schmidt (GS) method [38], [39].

2)	 MRA-based pansharpening methods are founded on the 
spatial decomposition of the HR Pan image by the wave-
let transform or Laplacian pyramids to extract the high 
spatial structures, which are injected into the interpolat-
ed LR MS image to obtain the HR MS image. Similar to 
CS-based methods, MRA-based approaches have devel-
oped from the traditional to the general understanding. 
The traditional understanding is strictly based on MRA 
algorithms, which are characterized by the three-step 
process of multiresolution decomposition–fusion–im-
age reconstruction. The general understanding is char-
acterized by a unified fusion framework without com-
plex three-step processing. The representative methods 
include the popular additive wavelet luminance propor-
tional (AWLP) method [3], [40] and generalized Lapla-
cian pyramid (GLP)-based methods [3], [41], [42].

3)	 VO-based pansharpening methods are built on varia-
tional theory, and the major process is generally based 
on or converted to the optimization of an energy func-
tional. This category was proposed during the 1990s 
[43]; after Ballester et al. [20] proposed the variational 
pansharpening method called P+XS, VO-based pan-
sharpening methods attracted ever-increasing atten-
tion and underwent rapid development. Model-based 
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methods [20], [21], [44] and sparse-based methods 
[22], [23] are two representative VO-related techniques.

4)	 DL-based pansharpening methods have attracted grow-
ing attention in recent years, and they can be regarded 
as a new generation. The basic idea is to learn a network 
between the fused image and the observations based on 
DL theory, with all the parameters automatically learned 
under the supervision of training samples. To the best 
of our knowledge, Huang et al. [24] proposed the first 
DL-based pansharpening method, and several works 
were subsequently developed [26], [45], [46]. However, 
compared with CS-, MRA-, and VO-based methods, DL-
based approaches generally require more data to train 
a robust network, and this is one of the limitations for 
their development.
On the whole, pansharpening methods have existed for 

nearly 40 years, and many studies [3], [11], [17], [47]–[60] 
have made great contributions to their improvement and 
development. However, there is a serious issue that should 
be given close attention, i.e., the lack of a specific large-
scale benchmark data set. On the one hand, to more ef-
fectively and objectively validate the performance of pan-
sharpening methods, experiments should be performed 
with large amounts of data, rather than one or two images, 
which may constitute subjective selection. Most exist-
ing studies assess pansharpening methods based on only 
a few images, due to the lack of a large-scale benchmark 
data set. Although [1] reviewed and discussed the perfor-
mance of the pansharpening methods from a perspective 
of meta-analysis, which was performed by making a statis-
tical analysis of all the large-scale studies ever published to 
avoid the limitation of the data sets, it was still restricted 
by the strict selection of satisfactory articles to validate a 
specific approach. On the other hand, data-driven pan-
sharpening methods, such as DL-based ones, are attracting 
more attention, but few opening benchmark data sets are 
available, especially large-scale data ones. This has been a 
serious limitation for the development of pansharpening 
methods.

In this article, we present a large-scale benchmark data 
set for pansharpening, including 2,270 pairs of Pan/MS im-
ages from several remote sensing satellites, with 200 Ikonos, 
500 QuickBird, 410 GF-1, 500 WorldView-4, 500 WorldView-2, 
and 160 WorldView-3 images. Pansharpening methods are 
reviewed, and the performance of popular approaches 
is evaluated based on the proposed data set. Large-scale 
thematic remote sensing data sets, including urban areas, 
green vegetation, and water scenarios, for pansharpening 
are constructed, as is a large-scale unlabeled data set with 
mixed surface features. In summary, the major contribu-
tions of this article are as follows:
1)	 We construct a large-scale pansharpening data set for 

different remote sensing satellites and typical thematic 
surface features. To the best of our knowledge, it is the 
first large-scale data set for pansharpening, and it can 
provide the research community a better resource to 

evaluate and advance state-of-the-art pansharpening 
algorithms.

2)	 We review the pansharpening methods, from the tradi-
tional understanding to the current general understand-
ing, including CS-, MRA-, VO-, and DL-based approaches.

3)	 We present a performance evaluation of pansharpening 
methods based on the large-scale data set, rather than 
one or two few images, from a perspective of statistical 
analysis. This can more sufficiently reflect the short-
comings and advantages of existing pansharpening 
methods.

4)	 The proposed large-scale data set to the community. 
It will be a helpful data set for researchers, especially 
those who have difficulty obtaining very-high-resolu-
tion remote sensing images in pansharpening. 

REVIEW OF PANSHARPENING METHODS

COMPONENT SUBSTITUTION-BASED METHODS
CS-based pansharpening methods are founded on the 
substitution of an LR component of the MS image by the 
HR Pan image to obtain the fused HR MS image. As shown 
in Figure 1, the development of CS-based pansharpening 
methods includes two stages: the traditional understand-
ing and the new understanding based on general formal-
ization.

For the traditional understanding, CS-based pansharp-
ening methods are characterized by complex three-step 
processing with forward projection transformation–CS–
inverse projection transformation. Therefore, CS-based 
methods in the traditional understanding are also re-
ferred to as projection-substitution methods [58]. However, 
in this case, development and improvement of CS-based 
methods are limited by the rigid projection transforma-
tion [17], [39], [48], such as IHS and PCA. Compared to 
the traditional understanding, the general understand-
ing featuring a unified fusion framework is simpler and 
more flexible. The fused image is obtained based on the 
injection of the high spatial structures of the HR Pan into 
a resampled MS image. These high spatial structures are 
generally obtained by the difference between the HR Pan 
and LR component, which is found through the linear 
combination of the MS spectral bands. The general under-
standing is represented as

	 M M g P I( ),L= + -t u � (1)

where Mt  is the fused HR MS image; Mu  is the resampled LR 
MS image; IL  denotes the component to be substituted; P  
denotes the HR Pan image, which is generally normalized 
(e.g., histogram matching) with IL  to reduce spectral dis-
tortion; and g  represents the injection weight of the high 
spatial structures.

The new understanding with the unified framework 
emancipates the CS-based methods from complex process-
ing with rigid projection transformations. This not only 
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promotes a faster implementation but opens new horizons 
for improvement and development. Correspondingly, a 
number of state-of-the-art CS-based pansharpening meth-
ods were developed on the unified framework, such as 
the adaptive GS (GSA) [38], band-dependent spatial detail 
(BDSD) [61], and partial-replacement adaptive CS (PRACS) 
approaches [62].

MULTIRESOLUTION ANALYSIS-BASED METHODS
MRA-based pansharpening methods are founded on the 
injection of the high frequency, which is extracted by spa-
tial filters (such as the wavelet transform [14] and Laplacian 
pyramids [63]) from the HR Pan image into the resampled 
LR MS image to obtain the fused HR MS image. As shown 
in Figure 2, similar to CS-based methods, MRA-based ap-
proaches have been developed from the traditional under-
standing to the new general understanding.

The traditional understanding of the MRA-based meth-
ods [64] features complex three-step processing with multi-
resolution decomposition–fusion–image reconstruction. It 
is extended to the Amélioration de la Résolution Spatiale 
par Injection de Structures [65] to highlight that the pur-
pose is to preserve the whole content of the LR MS image 

and add the high–spatial–structure information of the HR 
Pan image [3], [48], [66]. MRA-based methods are further 
extended to the current understanding with a unified fu-
sion framework [3], [59], [64], represented as

	 M M g P P( ),L= + -t u � (2)

where PL  is the low-pass version of the HR Pan image. 
It is shown that the new understanding liberates MRA-
based pansharpening methods from complex three-step 
processing and mainly focuses on effective spatial-struc-
ture extraction and injection-weight calculation. Cor-
respondingly, a number of state-of-the-art pansharpen-
ing methods have been proposed, such as the popular 
additive à trous wavelet transform (ATWT) [3], [15], 
[67], AWLP [40], [49], and modulation transfer function 
(MTF)-GLP [41], [42].

On the whole, the CS- and MRA-based methods un-
der the general understanding first extract the high spatial 
structures of the HR Pan image and inject them into the 
resampled LR MS image to obtain the fused HR MS im-
age. In comparison, the difference between them mainly 
depends on how to extract the high spatial structures from 
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FIGURE 1. CS-based pansharpening methods. (a) The traditional understanding of the CS-based pansharpening methods. (b) The new 
understanding of these methods based on the general formalization.
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the HR Pan image. For CS-based methods, the high spatial 
structures are extracted based on the subtraction of the LR 
component (obtained by the spectral band combination 
of the MS image) from the HR Pan image. For MRA-based 
methods, the high spatial structures are extracted from the 
HR Pan image alone, based on spatial filters. Therefore, the 
CS-based methods under the general understanding are 
also called spectral methods, and the MRA-based methods 
are referred to as spatial methods [49].

VARIATIONAL OPTIMIZATION-BASED METHODS
VO-based methods are established on variational theory. To 
the best of our knowledge, the idea of the VO-based meth-
ods was proposed during the 1990s [43]; since Ballester 
et al. [20] proposed the method called P+XS, they have at-
tracted ever-increasing attention and experienced rapid de-
velopment. A schematic of VO-based methods is presented 
in Figure 3. It is shown that VO-based methods feature two 
major parts: 1) the construction of an energy functional 
and 2) the optimization solution of the constructed energy 
functional. For the construction of the energy functional, 
the methods based on the observation model [20], [43], 
[44], [68]–[71] and sparse-representation theory [22], [23], 

[72], [73] are the most popular. The model-based methods 
regard the fusion process as a typical ill-posed inverse prob-
lem, and the energy functional is generally constructed 
from the observation model by considering the imaging 
process of the observations [21], [74], [75], represented as 
follows:

	 x x x x( ) ( , ) ( , ) ( ),E f f fLR MS HR Panspectral spatial prior= + + � (3)

where x  denotes the ideal fused image.
As shown in (3), the energy functional generally con-

tains three terms: spectral fidelity, spatial enhancement, 
and the prior. The spectral fidelity term is constructed from 
the relationship between the ideal HR MS and the LR MS 
image [2], [44], [74]–[76] to preserve the spectral informa-
tion. The spatial-enhancement term is constructed based 
on the relationship between the ideal HR MS and the HR 
Pan. There are generally two ways: 1) the spatial structure 
similarity between the HR MS and the HR Pan [77]–[79] 
and 2) the spectral band combination relationship be-
tween the narrow HR MS bands and the wide HR Pan band 
[44], [74], [80]. The prior term is constructed to impose 
constraints on the ideal fused image, such as the popular 
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FIGURE 2. MRA-based pansharpening methods. (a) The traditional understanding of the MRA-based pansharpening methods. (b) The new 
understanding of these methods based on the general formalization.
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Huber-Markov prior [44] and the total variation prior [71]. 
The sparse-based methods are founded on the sparse-repre-
sentation theory [81], [82], and the first work was proposed 
by Li and Yang [22]. The sparse-based methods are mainly 
characterized by dictionary learning, and this generally in-
cludes offline dictionary learning [22], [73], which relies on 
an external database, and online dictionary learning [23], 
[72], [83] directly from the images to be fused.

The optimization method is generally based on iterative 
optimization algorithms [2], [84], such as the conjugate 
gradient [2] and alternating-direction method of multipli-
ers [76]. However, these iterative optimization methods are 
generally time consuming, especially for images in large 
dimensions, and this seriously hinders the engineering ap-
plication of VO-based pansharpening methods.

DEEP-LEARNING-BASED METHODS
In addition to the previous three categories, DL-based 
pansharpening methods have attracted growing attention 
during recent years. They are based on the hot-spot DL 
theory [85]–[87], featuring deep neural networks (DNNs) 
with more than two layers [87]. DL-based pansharpening 
methods assume that the relationship between the obser-
vations and the ideal fused HR MS image is complex and 
nonlinear. State-of-the-art DNNs with significant nonlin-
ear representational power are then utilized to learn the 
network between the ideal fused image and the observa-
tions, with all parameters automatically being learned 
under the supervision of large-scale training samples. A 
schematic of typical DL-based pansharpening methods is 
given in Figure 4.

As shown in Figure 4, typical DL-based pansharpen-
ing methods generally include two-step processing: 1) 

network training and 2) obtaining the fused image based 
on the pretrained network. Among them, network train-
ing is relatively more important, and it is performed to 
learn the transformation relationship from the observa-
tions to the ideal fused HR MS images. It should be noted 
that practical ideal HR MS images generally do not exist. 
Therefore, training samples are typically obtained based 
on Wald’s protocol [88]; i.e., the original MS and Pan im-
ages are spatially degraded by the spatial-resolution ra-
tio r  between the HR Pan and LR MS images, and the 
original MS images are then regarded as the target HR MS 
images. During network training, convolutional neural 
networks (CNNs) are generally utilized, and a number of 
parameters { , }W b  for all the convolutional layers should 
be learned from the training samples. This is realized by 
the minimization of the loss function ( , ),Diff Ref FMS MS  
which is constructed based on the difference between 
the output of the network FMS  and the target label image 

.RefMS

To the best of our knowledge, Huang et al. [24] proposed 
the first DL-based pansharpening method. They construct-
ed the fused HR MS image from the LR MS image based on 
the pretrained network, which was learned from the HR/
LR Pan images by the DNN. Masi et al. [26] proposed a DL 
method based on a CNN borrowed from the super-resolu-
tion CNN proposed in [89]. For network training, the HR 
Pan image was regarded as a new band to be overlaid on the 
resampled LR MS image to train the network. It was further 
improved with the assistance of typical nonlinear radiomet-
ric indices calculated from the MS image, such as the nor-
malized-difference water index and normalized-difference 
vegetation index. Zhong et al. [46] proposed performing su-
per-resolution of the LR MS image based first on a CNN; the 
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FIGURE 3. VO-based pansharpening methods. (a) The energy-functional construction. (b) The optimization solution. ADMM: alternating-
direction method of multipliers.
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enhanced MS image and HR Pan image were further fused 
based on the GS pansharpening method.

The preceding CNN-based pansharpening methods 
are based on simple and flat networks with only three 
convolutional layers. This relatively shallow architecture 
is generally regarded as insufficient to take full advantage 
of the strong nonlinear representative ability of DL mod-
els. Therefore, most studies [27], [45], [90]–[94] advocated 
deeper networks to improve performance. Accordingly, 
Yuan et al. [27], [45], Rao et al. [92], Yang et al. [94], and 
Li et al. [90] proposed DL-based pansharpening methods 
founded on the residual learning network [95]. In addition, 
Scarpa et al. [96] proposed a robust target-adaptive CNN-
based pansharpening method by considering the presence 
of a mismatch with respect to the training set and across 
different sensors.

PROPOSED DATA SET FOR PANSHARPENING
To advance the state of the art in pansharpening, a large-
scale data set is constructed in this article. (The proposed 
data set is available at http://www.escience.cn/people/fshao/ 
database.html.) It consists of 2,270 pairs of HR Pan and LR 
MS images. For the data set construction, geometrical regis-
tration was performed, and the HR Pan and LR MS images 
were cropped for convenient usage. In addition, all the im-
ages in the data set were rearranged and grouped based on 
remote sensing satellite types and thematic surface features, 
respectively. Samples of the proposed data set are shown in 
Figure 5, and details are displayed in Table 1.

DATA SET GROUPED BY REMOTE SENSING SATELLITES
The proposed data set was grouped by remote sensing satel-
lite types, consisting of 200 pairs of Ikonos Pan/MS images, 
500 pairs of QuickBird Pan/MS images, 410 pairs of GF-1 
Pan/MS images, 500 pairs of WorldView-4 Pan/MS images, 
500 pairs of WorldView-2 Pan/MS images, and 160 pairs of 
WorldView-3 Pan/MS images. The Pan images have a spatial 
dimension of 1,024 # 1,024, and the MS images have a spa-
tial dimension of 256 # 256. In the spectral dimension, the 
MS images from Ikonos, QuickBird, GF-1, and WorldView-4 
have four bands, and the WorldView-2 and WorldView-3 MS 
images have eight.

DATA SET GROUPED BY THEMATIC SURFACE 
FEATURES
The proposed data set was regrouped by typical the-
matic surface features. They include the urban thematic 
data set with 510 pairs of Pan/MS images, green veg-
etation thematic data set with 258 pairs, and water-
scenario thematic data set with 318 pairs. In addition, 
a large-scale unlabeled data set containing 1,184 pairs 
of Pan/MS images with mixed surface features was con-
structed.
1)	 Urban data set: The images in this data set are mainly 

located in urban regions, and buildings are the focus. In 
addition, trees, roads, and so forth may exist, which is 
inevitable for remote sensing images of city areas. The 
HR Pan images have a dimension of 1,024 # 1,024 # 1, 
and the LR MS images have a dimension of 256 # 256 
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# 4 (Ikonos, QuickBird, GF-1, and WorldView-4) and 256 
# 256 # 8 (WorldView-2 and WorldView-3).

2)	 Green vegetation data set: The images in this data set take 
green vegetation as the principal part. They are gener-
ally located in suburbs, mountainous areas, and rural 

locations, such as farmland. The HR Pan images have a 
dimension of 1,024 # 1,024 # 1, and the LR MS images 
have a dimension of 256 # 256 # 4 (Ikonos, QuickBird, 
GF-1, and WorldView-4) and 256 # 256 # 8 (World-
View-2 and WorldView-3).

Urban Green Vegetation Water Scenario
Unlabeled

With Mixed Features

Ikonos

QuickBird

GF1

WorldView-4

WorldView-2

WorldView-3

FIGURE 5. Samples of the proposed data set. 
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3)	 Water-scenario data set: This data set is mainly construct-
ed with water-surface features as the main body. For 
these images, boats and other ground features may ex-
ist. Like the urban and green vegetation data sets, the HR 
Pan images have a dimension of 1,024 # 1,024 # 1, and 
the LR MS images have a dimension of 256 # 256 # 4 
(Ikonos, QuickBird, GF-1, and WorldView-4) and 256 # 
256 # 8 (WorldView-2 and WorldView-3).

4)	 Unlabeled data set: The images in this data set consist of 
different surface features, of which two or more different 
kinds are generally the main parts. Compared with the 
three previous thematic data sets, the images in the unla-
beled data set have more complex ground features, such 
as the mixed attributes of large areas of vegetation and 
water as well as locations that have buildings, water, and 
soil. The HR Pan images have a dimension of 1,024 # 
1,024 # 1, and the LR MS images have a dimension of 
256 # 256 # 4 (Ikonos, QuickBird, GF-1, and WorldView-4) 
and 256 # 256 # 8 (WorldView-2 and WorldView-3).

EXPERIMENTS

STATISTICAL ANALYSIS
In this article, the performance of the pansharpening methods 
is evaluated and statistically analyzed based on the proposed 
large-scale data sets for different remote sensing satellites and 
typical thematic remote sensing images. In the experiments, 
large numbers of results for each satellite data set and themat-
ic data set were statistically analyzed rather than depending 
on one or two images. Therefore, a 95% confidence interval 
was applied to provide reliable statistical results, represented 
as . ( ),SEO 1 96u! t  with ( ) /SE O Nvart =  denoting the 
standard error. Ou  is the mean value, while Ovar  denotes the 
variance, and N  indicates the amount of data for analysis. 
The mean value reflects the overall accuracy, and the vari-
ance value denotes the robustness of the pansharpening 
methods. To ensure the reliability of the statistical results, 
the maximum and minimum values were removed before 
analysis. This is feasible for the statistical analysis of large 
numbers of data [97].

EXPERIMENT SETTINGS
To effectively verify the performance of the pansharpen-
ing methods, experiments were performed using the data 
set of different remote sensing satellite images, including 
four- and eight-band images; the data set of thematic im-
ages with the typical urban area, green vegetation, and 
water scenario; and the unlabeled data set with mixed 
features. Reduced- and full-resolution experiments were 
performed. The reduced-resolution experiment was based 
on Wald’s protocol [88]; i.e., the original Pan and MS im-
ages were spatially degraded through low-pass filtering 
using Gaussian-MTF blurring and then downsampled by 
the spatial-resolution ratio between them. The original 
MS image was regarded as the reference image for evalu-
ation. The popular quantitative evaluation indices of the 

Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) 
[88], spectra mapper angle (SAM) [98], and Q2n  index [99] 
were employed. In the full-resolution experiment, due to 
the lack of a reference image, the popular nonreference-
quality evaluation index of the quality with no reference 
(QNR) [100] was used. The quantitative-evaluation indices 
are shown in Table 2.

As shown in Table 2, z  denotes the reference image, 
and xt  denotes the fused image to be evaluated, while r  
is the spatial-resolution ratio, L L1 2  is the spatial dimen-
sion, and B is the total number of MS spectral bands. The 
symbol v denotes the standard variance, and n indicates 
the mean value. zxv t  denotes the covariance of z  and xt , 
 Dm  in the QNR assesses the spectral distortion, and Ds  in 
the QNR assesses the spatial distortion, while PLP  denotes 
the low-resolution Pan image. The universal image-quality 
index proposed in [101] calculates the similarity between 
two images. The parameters of p, q, ,a  and b  are generally 
set to one.

In the experiments, the performance of 19 pansharp-
ening methods, as shown in Table 3, was evaluated. For 
the DL-based multiscale, multidepth CNN (MSDCNN) 
method, Wald’s protocol was used for the network train-
ing, and the default parameters were applied [45]. Images 
that were 70% randomly selected were used to train the 
network, and the residual 30% of the images was utilized 
to validate the method for each data set. To ensure objec-
tivity and equality, the same images were applied to the 
validation of the other 18 pansharpening methods.

EXPERIMENTAL RESULTS BASED ON DATA SETS FOR 
DIFFERENT SATELLITES 
The experiment results based on data sets for different re-
mote sensing satellites, i.e., Ikonos, QuickBird, GF-1, World-
View-4, WorldView-2, and WorldView-3, are shown in Fig-
ures  6–11 and Tables  4–9, respectively. For each remote 
sensing satellite, the statistical results based on reduced- 
and full-resolution experiments are shown. For each figure, 
the results with the ERGAS, SAM, Q2n  index in the reduced-
resolution experiment are shown in parts (a)–(c), respective-
ly, and the results with ,Dm  ,Ds  and the QNR in the full-res-
olution experiment are shown in parts (d)–(f), respectively. 
For Figures 6–11, the horizontal axis represents different 
pansharpening methods, and the vertical axis denotes the 
statistical quantitative-evaluation results by a mean value 
and the error bars for the 95% confidence interval. In addi-
tion, the top five results for each figure are marked with a 
yellow box. Tables 4–9 provide details. The top five results 
for each quantitative-evaluation index are marked in bold, 
respectively. In addition, it should be noted that, if three 
indices of a method are marked in bold, the intention is to 
indicate excellent performance.

As shown in Figure 6 and Table 4, the BDSD, GSA, 
MTF-GLP, MTF-GLP-high-pass modulation (HPM)-post 
processing (PP), MTF-GLP-context-based decision (CBD), 
and MSDCNN methods show satisfactory performance in 
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the Ikonos experiment. Among 
them, the BDSD method has 
excellent results in the re-
duced- and full-resolution ex-
periments. Although the GSA, 
MTF-GLP, and MTF-GLP-HPM-
PP methods show satisfactory 
performance in the reduced-
resolution experiment, their 
performance in the full-reso-
lution experiment is slightly 
poorer. The performance of the 
DL-based MSDCNN method in 
the reduced- and full-resolution 
experiments is robust.

In the QuickBird experiment, 
the BDSD, PRACS, MTF-GLP, 
MTF-GLP-HPM-PP, MTF-GLP-
HPM, MTF-GLP -CBD, and 
MSDCNN methods show over-
all satisfactory performance. 
Among them, the MTF-GLP 
and MTF-GLP-HPM-PP methods show good performance 
in the reduced-resolution experiment and relatively poorer 
performance in the full-resolution experiment. Conversely, 
the MTF-GLP-HPM and MTF-GLP-CBD methods show 
good performance in the full-resolution experiment and 
poor performance in the reduced-resolution experiment. 
The BDSD and MSDCNN methods show excellent and 
robust performance in the reduced- and full-resolution ex-
periments.

For the experiment results based on GF-1 images, the 
BDSD, ATWT-model 2 (M2), ATWT-model 3 (M3), MTF-
GLP-HPM, MTF-GLP-CBD, and MSDCNN methods show 

overall satisfactory performance. While the best perfor-
mance is shown for the MTF-GLP-CBD method in the 
full-resolution experiment, the approach had a relatively 
poorer performance in the reduced-resolution experiment, 
especially in the ERGAS and SAM quantitative-evaluation 
indices. The DL-based MSDCNN method shows the best 
performance and has competitive advantages over the 
other pansharpening methods in the reduced-resolution 
experiment. In addition, it shows robust performance in 
the full-resolution experiment.

In the WorldView-4 experiment, the BDSD, PRACS, 
MTF-GLP, MTF-GLP-HPM, MTF-GLP-CBD, and MSDCNN 

TABLE 1. DETAILS OF THE PROPOSED DATA SET.

SATELLITE  
SENSORS

SPATIAL 
DIMENSION

SPECTRAL 
DIMENSION DIMENSION SIZE

NUMBER OF THEMATIC SCENE IMAGES

DATA  
VOLUMEURBAN

GREEN  
VEGETATION

WATER  
SCENARIO

UNLABELED 
WITH MIXED 
FEATURES

Ikonos Pan 1 m One band 1,024 × 1,024 60 8 6 126 200

MS 4 m Four band 256 × 256 × 4

QuickBird Pan 0.61 m One band 1,024 × 1,024 150 20 42 288 500

MS 2.44 m Four band 256 × 256 × 4

GF1 Pan 2 m One band 1,024 × 1,024 5 90 10 305 410

MS 8 m Four band 256 × 256 × 4

WorldView-4 Pan 0.31 m One band 1, 024 × 1,024 90 85 95 230 500

MS 1.24 m Four band 256 × 256 × 4

WorldView-2 Pan 0.5 m One band 1,024 × 1,024 150 35 145 170 500

MS 2 m Eight band 256 × 256 × 8

WorldView-3 Pan 0.31 m One band 1,024 × 1,024 55 20 20 65 160

MS 1.24 m Eight band 256 × 256 × 8

TABLE 2. THE QUANTITATIVE-EVALUATION INDICES.

EXPERIMENT 
GROUP

EVALUATION 
INDEX DEFINITION MEANING

Reduced-
resolution 
experiment

ERGAS z x /
r B

L L100 1ERGAS
z

b b

b
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2
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1 bn
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=
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methods show overall satisfactory performance. Among 
them, the MSDCNN method has excellent experiment re-
sults in the reduced- and full resolution experiments, espe-
cially in the quantitative-evaluation indices of the ERGAS, 
SAM, ,Ds  and QNR. The MTF-GLP-HPM method shows 
good performance in the full-resolution experiment and 
relatively poorer performance in the reduced-resolution ex-
periment.

For the eight-band WorldView-2 and WorldView-3 satel-
lite images, the overall performance is relatively poorer 
than the four-band Ikonos, QuickBird, GF-1, and World-
View-4 satellite images. This can be seen in most of the 
quantitative-evaluation indices, such as the ERGAS, 
SAM, and .Q2n  On the one hand, the PRACS, MTF-
GLP, MTF-GLP-HPM, MTF-GLP-CBD, and MSDCNN 
methods show overall satisfactory performance for the 

WorldView-2 and WorldView-3 images. In addition, the 
BDSD method shows a good result in the WorldView-2 
experiment. On the other hand, the PRACS, MTF-GLP, 
and MTF-GLP-HPM methods show inconsistent perfor-
mance in the reduced- and full-resolution experiments 
for the WorldView-2 and WorldView-3 images. Particularly, 
the PRACS and MTF-GLP-HPM methods have excellent 
performance in terms of the full-resolution quantitative-
evaluation indices and relatively poorer performance in 
the reduced-resolution experiment. Conversely, the MTF-
GLP method shows a satisfactory result in the reduced-
resolution experiment and relatively poorer performance 
in the full-resolution experiment. The MTF-GLP-CBD 
method shows competitive results in the reduced- and 
full-resolution experiments for the WorldView-2 and 
WorldView-3 images.

TABLE 3. THE PANSHARPENING METHODS IN THE EXPERIMENTS.

METHOD BASIC MEANING AND PARAMETER SETTINGS

Generalized IHS [3], [19] A generalization of the traditional IHS pansharpening method [17] for the fusion of more than three MS 
bands; it is also called the fast generalized IHS fusion method

Brovey [3], [102] A CS-based method under the general understanding; it has been commercialized in professional soft-
ware, such as ENVI

PCA [3], [17] A typical CS-based method founded on the PCA transformation; it has been commercialized in profes-
sional software, such as ENVI

BDSD [3], [61] A data-dependent, self-adaptive CS-based approach featuring two advantages: 1) the optimal solution of 
the spatial-detail extraction and injection based on the minimum mean square error and 2) parameter 
estimation based on local regions

GS [3], [39] A typical CS-based method built on the GS transformation; it has been commercialized in professional 
software, such as ENVI

GSA [3], [38] An improved GS method in terms of the adaptive calculation of the spectral band combination weight 
based on a linear-regression algorithm

PRACS [3], [62] A CS-based method founded on the partial replacement of the intensity component; the Pan is simulated 
based on the weighted average of the Pan and MS bands instead of directly using the original Pan to 
replace the intensity component

HPF [3], [17] A typical MRA-based method; in the experiments, the default parameter with a 5 × 5 box filter was used

Smoothing filter-based intensity 
modulation (SFIM) [3], [103], [104]

An enhanced HPF method based on the spatial-detail injection scheme of HPM, which is calculated based 
on the ratio of the resampled MS image and the low-pass filtering Pan image

Indusion [3], [105] Indusion combines induction and fusion; it is a fusion method based on the induction-scaling technique 
and profits from multiple equalization steps to improve performance

MTF-GLP [3], [41] A popular MRA-based method founded on the GLP with an MTF filter; the unitary detail-injection  
model is applied

MTF-GLP-HPM [3], [106] The MTF-GLP with the spatial-detail injection scheme of the HPM

MTF-GLP-HPM-PP [3], [107] The MTF-GLP-HPM followed by a PP phase [107] to correct the noise at the edge regions

MTF-GLP-CBD [3], [50] The MTF-GLP with the spatial-detail injection scheme of the CBD, which is locally optimized by patching 
the image in nonoverlapping zones

ATWT [3], [15], [67] An MRA-based method built on the ATWT with a unitary injection model

ATWT-M2 [3], [65] The ATWT with model 2 proposed in [65], which is based on moment matching to adjust the wavelet coef-
ficients of the Pan image

ATWT-M3 [3], [65] The ATWT with model 3 proposed in [65], which is based on least-square fitting to adjust the wavelet coef-
ficients of the Pan image

AWLP [3], [40] A generalization of the AWL pansharpening method [15] in terms of a proportional spatial-detail injection 
weight, relying on the original MS-band radiance proportionality

MSDCNN [45] A DL-based method founded on an MSDCNN

Authorized licensed use limited to: Wuhan University. Downloaded on October 03,2020 at 12:57:35 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2020    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        13 

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

3.5

S
A

M

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N
(a)

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N

(b)

(c) (d)

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N

(e)

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N

(f)

E
R

G
A

S

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N

D
_λ

D
_S

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
C

A
IH

S
B

ro
ve

y
B

D
S

D
G

S
G

S
A

P
R

A
C

S
H

P
F

S
F

IM
In

du
si

on
A

T
W

T
A

W
LP

A
T

W
T

_M
2

A
T

W
T

_M
3

M
T

F
_G

LP
M

T
F

_G
LP

_H
P

M
_P

P
M

T
F

_G
LP

_H
P

M
M

T
F

_G
LP

_C
B

D
M

S
D

C
N

N

Q
2n  

In
de

x

Q
N

R

FIGURE 6. The experiment results based on the Ikonos data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respectively, in 
the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment. SFIM: 
smoothing filter-based intensity modulation.
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FIGURE 7. The experiment results based on the QuickBird data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respectively, in 
the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full resolution experiment.
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FIGURE 8. The experiment results based on the GF-1 data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respectively, in the 
reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 9. The experiment results based on the WorldView-4 data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respec-
tively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 10. The experiment results based on the WorldView-2 data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respec-
tively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 11. The experiment results based on the WorldView-3 data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respec-
tively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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TABLE 4. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE IKONOS DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [1.942, 2.429] [2.471, 3.169] [0.76, 0.807] [0.064, 0.086] [0.141, 0.181] [0.754, 0.804] 

HIS [2.036, 2.512] [2.597, 3.267] [0.704, 0.76] [0.121, 0.161] [0.216, 0.264] [0.627, 0.691]

Brovey [1.993, 2.445] [2.535, 3.164] [0.704, 0.761] [0.105, 0.14] [0.203, 0.248] [0.655, 0.715]

BDSD [1.456, 1.874] [2.036, 2.595] [0.836, 0.877] [0.024, 0.032] [0.072, 0.087] [0.885, 0.905]

GS [1.872, 2.333] [2.303, 2.907] [0.765, 0.807] [0.065, 0.09] [0.165, 0.208] [0.728, 0.781]

GSA [1.475, 1.904] [2.022, 2.581] [0.827, 0.869] [0.09, 0.113] [0.166, 0.203] [0.712, 0.76]

PRACS [1.616, 2.06] [2.082, 2.649] [0.804, 0.847] [0.043, 0.057] [0.117, 0.145] [0.809, 0.845]

HPF [1.671, 2.089] [2.127, 2.695] [0.803, 0.843] [0.105, 0.131] [0.154, 0.196] [0.704, 0.759]

SFIM [1.639, 2.051] [2.079, 2.637] [0.807, 0.846,] [0.105, 0.132] [0.151, 0.193] [0.707, 0.762]

Indusion [2.038, 2.492] [2.314, 2.914] [0.751, 0.789,] [0.092, 0.117] [0.127, 0.17] [0.739, 0.795]

ATWT [1.58, 1.993] [2.075, 2.635] [0.814, 0.855] [0.114, 0.141] [0.166, 0.208] [0.686, 0.74]

AWLP [1.568, 1.978] [2.056, 2.6] [0.817, 0.858] [0.114, 0.147] [0.159, 0.202] [0.689, 0.747]

ATWT-M2 [2.246, 2.707] [2.483, 3.126] [0.705, 0.74] [0.091, 0.127] [0.132, 0.167] [0.734, 0.789]

ATWT-M3 [2.231, 2.684] [2.564, 3.219] [0.724, 0.761] [0.101, 0.128] [0.116, 0.14] [0.754, 0.794]

MTF-GLP [1.495, 1.907] [2.033, 2.593] [0.824, 0.865] [0.118, 0.144] [0.173, 0.215] [0.678, 0.731]

MTF-GLP-HPM-PP [1.449, 1.853] [1.982, 2.533] [0.829, 0.869] [0.117, 0.144] [0.169, 0.211] [0.682, 0.735]

MTF-GLP-HPM [2.107, 2.549] [2.308, 2.902] [0.747, 0.775] [0.063, 0.089] [0.096, 0.132] [0.795, 0.848]

MTF-GLP-CBD [1.572, 2.062] [2.009, 2.644] [0.826, 0.865] [0.058, 0.073] [0.069, 0.083] [0.852, 0.876]

MSDCNN [1.524, 2.035] [1.861, 2.305] [0.785, 0.859] [0.05, 0.075] [0.103, 0.123] [0.815, 0.85]

For Tables 4–13, the top five results for each quantitative evaluation index are marked in bold.

TABLE 5. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE QuickBird DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [1.498, 1.812] [1.92, 2.428] [0.733, 0.777] [0.055, 0.07] [0.112, 0.149] [0.798, 0.84]

HIS [1.42, 1.632] [1.676, 1.915] [0.622, 0.665] [0.14, 0.163] [0.185, 0.222] [0.66, 0.704]

Brovey [1.4, 1.599] [1.652, 1.866] [0.633, 0.675] [0.122, 0.142] [0.175, 0.209] [0.685, 0.726]

BDSD [1.154, 1.4] [1.401, 1.672] [0.795, 0.834] [0.033, 0.042] [0.05, 0.063] [0.9, 0.918]

GS [1.315, 1.54] [1.496, 1.743] [0.734, 0.773] [0.058, 0.072] [0.118, 0.145] [0.797, 0.830]

GSA [1.172, 1.433] [1.362, 1.636] [0.782, 0.823] [0.079, 0.096] [0.138, 0.166] [0.759, 0.796]

PRACS [1.055, 1.259] [1.301, 1.539] [0.797, 0.835] [0.043, 0.054] [0.092, 0.114] [0.842, 0.869]

HPF [1.224, 1.445] [1.381, 1.614] [0.76, 0.8] [0.093, 0.111] [0.115, 0.144] [0.767, 0.806]

SFIM [1.215, 1.439] [1.371, 1.603] [0.763, 0.803] [0.093, 0.111] [0.113, 0.141] [0.769, 0.808]

Indusion [1.553, 1.794] [1.59, 1.838] [0.7, 0.737] [0.093, 0.112] [0.076, 0.101] [0.804, 0.839]

ATWT [1.14, 1.363] [1.32, 1.554] [0.774, 0.816] [0.103, 0.121] [0.138, 0.167] [0.737, 0.776]

AWLP [1.153, 1.381] [1.362, 1.594] [0.776, 0.817] [0.098, 0.115] [0.132, 0.161] [0.748, 0.786]

ATWT-M2 [1.418, 1.603] [1.612, 1.843] [0.721, 0.749] [0.061, 0.079] [0.089, 0.108] [0.826, 0.856]

ATWT-M3 [1.384, 1.562] [1.659, 1.893] [0.745, 0.778] [0.08, 0.095] [0.069, 0.086] [0.831, 0.857]

MTF-GLP [1.093, 1.326] [1.286, 1.523] [0.782, 0.823] [0.102, 0.12] [0.142, 0.171] [0.735, 0.775]

MTF-GLP-HPM-PP [1.078, 1.316] [1.276, 1.512] [0.786, 0.826] [0.102, 0.12] [0.139, 0.168] [0.737, 0.777]

MTF-GLP-HPM [1.409, 1.603] [1.495, 1.714] [0.727, 0.759] [0.041, 0.053] [0.072, 0.085] [0.868, 0.889]

MTF-GLP-CBD [1.273, 1.559] [1.412, 1.715] [0.776, 0.815] [0.036, 0.046] [0.058, 0.076] [0.884, 0.908]

MSDCNN [0.822, 0.937] [1.048, 1.209] [0.819, 0.862] [0.056, 0.068] [0.064, 0.077] [0.862, 0.883]
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TABLE 6. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE GF-1 DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [2.677, 3.244] [2.785, 3.666] [0.621, 0.676] [0.084, 0.1 [0.356, 0.425] [0.525, 0.594] 

HIS [2.369, 2.719] [1.752, 1.994] [0.586, 0.627] [0.132, 0.147] [0.386, 0.432] [0.489, 0.535]

Brovey [2.281, 2.627] [1.576, 1.781] [0.602, 0.64] [0.12, 0.134] [0.365, 0.408] [0.516, 0.559]

BDSD [1.98, 2.314] [1.905, 2.179] [0.796, 0.818] [0.018, 0.022] [0.063, 0.08] [0.901, 0.919]

GS [2.471, 2.85] [2.107, 2.47] [0.644, 0.682] [0.089, 0.104] [0.348, 0.398] [0.545, 0.595]

GSA [2.217, 2.6] [1.957, 2.193] [0.722, 0.758] [0.111, 0.131] [0.308, 0.361] [0.563, 0.619]

PRACS [1.934, 2.272] [1.853, 2.07] [0.774, 0.804] [0.043, 0.054] [0.188, 0.232] [0.732, 0.778]

HPF [2.042, 2.37] [1.708, 1.938] [0.731, 0.763] [0.082, 0.097] [0.136, 0.163] [0.76, 0.796]

SFIM [2.131, 2.523] [1.698, 1.925] [0.732, 0.765] [0.081, 0.096] [0.134, 0.161] [0.763, 0.799]

Indusion [2.494, 2.884] [1.86, 2.075] [0.635, 0.671] [0.089, 0.105] [0.098, 0.117] [0.793, 0.823]

ATWT [2.025, 2.347] [1.699, 1.936] [0.739, 0.772] [0.098, 0.114] [0.185, 0.216] [0.7, 0.739]

AWLP [2.030, 2.355] [1.767, 2.011] [0.741, 0.772] [0.092, 0.107] [0.171, 0.2] [0.718, 0.755]

ATWT-M2 [1.818, 2.099] [1.8, 2.054] [0.769, 0.793] [0.032, 0.037] [0.053, 0.063] [0.905, 0.916]

ATWT-M3 [1.79, 2.071] [1.867, 2.129] [0.779, 0.801] [0.016, 0.02] [0.068, 0.083] [0.9, 0.916]

MTF-GLP [2.034, 2.359] [1.701, 1.941] [0.739, 0.774] [0.103, 0.12] [0.195, 0.226] [0.686, 0.726]

MTF-GLP-HPM-PP [2.124, 2.532] [1.685, 1.92] [0.741, 0.776] [0.102, 0.118] [0.192, 0.223] [0.69, 0.729]

MTF-GLP-HPM [1.86, 2.191] [1.619, 1.832] [0.779, 0.802] [0.028, 0.035] [0.047, 0.057] [0.911, 0.926]

MTF-GLP-CBD [2.41, 2.815] [2.01, 2.317] [0.734, 0.765] [0.019, 0.024] [0.03, 0.037] [0.941, 0.952]

MSDCNN [1.276, 1.601] [1.266, 1.47] [0.868, 0.896] [0.036, 0.044] [0.036, 0.045] [0.915, 0.929]

TABLE 7. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE WorldView-4 DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [3.126, 3.685] [3.246, 3.887] [0.66, 0.713] [0.067, 0.082] [0.131, 0.16] [0.775, 0.81] 

HIS [2.408, 2.804] [2.269, 2.678] [0.645, 0.693] [0.13, 0.159] [0.161, 0.198] [0.685, 0.736]

Brovey [2.278, 2.665] [1.99, 2.368] [0.67, 0.717] [0.101, 0.122] [0.153, 0.182] [0.725, 0.765]

BDSD [2.102, 2.489] [2.157, 2.605] [0.775, 0.816] [0.028, 0.034] [0.055, 0.062] [0.907, 0.916]

GS [2.381, 2.793] [2.357, 2.782] [0.707, 0.754] [0.053, 0.065] [0.119, 0.143] [0.805, 0.835]

GSA [2.048, 2.426] [2.016, 2.438] [0.767, 0.811] [0.07, 0.083] [0.147, 0.168] [0.766, 0.794]

PRACS [1.961, 2.315] [1.966, 2.395] [0.773, 0.811] [0.028, 0.035] [0.094, 0.107] [0.864, 0.881]

HPF [2.113, 2.476] [1.94, 2.317] [0.756, 0.796] [0.066, 0.082] [0.083, 0.107] [0.825, 0.859]

SFIM [2.461, 3.159] [2.034, 2.408] [0.754, 0.795] [0.065, 0.081] [0.082, 0.106] [0.826, 0.861]

Indusion [2.601, 3.047] [2.116, 2.494] [0.707, 0.748] [0.056, 0.071] [0.067, 0.09] [0.849, 0.881]

ATWT [2.014, 2.355] [1.918, 2.295] [0.769, 0.81] [0.077, 0.092] [0.102, 0.126] [0.798, 0.831]

AWLP [2.254, 2.634] [2.18, 2.588] [0.777, 0.814] [0.063, 0.081] [0.085, 0.11] [0.823, 0.860]

ATWT-M2 [2.282, 2.707] [2.074, 2.515] [0.726, 0.76] [0.083, 0.105] [0.1, 0.127] [0.788, 0.828]

ATWT-M3 [2.289, 2.69] [2.152, 2.597] [0.748, 0.781] [0.074, 0.091] [0.068, 0.087] [0.833, 0.864]

MTF-GLP [1.908, 2.241] [1.894, 2.275] [0.782, 0.823] [0.077, 0.092] [0.11, 0.134] [0.791, 0.824]

MTF-GLP-HPM-PP [2.37, 3.078] [2.014, 2.395] [0.78, 0.822] [0.077, 0.092] [0.108, 0.132] [0.793, 0.826]

MTF-GLP-HPM [2.63, 3.167] [2.01, 2.39] [0.713, 0.75] [0.031, 0.044] [0.065, 0.081] [0.881, 0.907]

MTF-GLP-CBD [2.154, 2.538] [1.996, 2.415] [0.793, 0.827] [0.036, 0.042] [0.063, 0.075] [0.887, 0.904]

MSDCNN [1.694, 2.002] [1.791, 2.068] [0.752, 0.808] [0.044, 0.053] [0.039, 0.047] [0.905, 0.918]
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TABLE 8. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE WorldView-2 DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [5.791, 6.461] [5.523, 6.79] [0.581, 0.642] [0.097, 0.131] [0.206, 0.25] [0.667, 0.729]

HIS [5.232, 5.642] [5.027, 6.012] [0.592, 0.653] [0.132, 0.171] [0.213, 0.264] [0.63, 0.699]

Brovey [5.306, 5.721] [4.757, 5.692] [0.596, 0.657] [0.084, 0.108] [0.193, 0.233] [0.694, 0.746]

BDSD [4.342, 4.678] [4.73, 5.68] [0.662, 0.736] [0.077, 0.086] [0.12, 0.143] [0.785, 0.81]

GS [5.088, 5.521] [4.797, 5.742] [0.614, 0.675] [0.089, 0.123] [0.198, 0.244] [0.68, 0.743]

GSA [4.011, 4.329] [4.247, 5.121] [0.688, 0.757] [0.119, 0.154] [0.214, 0.256] [0.645, 0.705]

PRACS [4.911, 5.27] [4.562, 5.479] [0.629, 0.7] [0.039, 0.055] [0.14, 0.17] [0.789, 0.829]

HPF [4.665, 5.038] [4.326, 5.176] [0.653, 0.72] [0.123, 0.157] [0.198, 0.242] [0.654, 0.714]

SFIM [4.6, 4.98] [4.266, 5.113] [0.653, 0.721] [0.12, 0.153] [0.193, 0.238] [0.661, 0.722]

Indusion [5.412, 5.844] [4.656, 5.562] [0.618, 0.680] [0.109, 0.14] [0.181, 0.225] [0.68, 0.74]

ATWT [4.493, 4.851] [4.262, 5.099] [0.663, 0.731] [0.132, 0.163] [0.205, 0.248] [0.643, 0.701]

AWLP [4.712, 5.086] [4.342, 5.19] [0.662, 0.731] [0.102, 0.125] [0.181, 0.221] [0.691, 0.743]

ATWT-M2 [6.03, 6.541] [4.781, 5.743] [0.554, 0.615] [0.15, 0.192] [0.21, 0.252] [0.622, 0.685]

ATWT-M3 [5.789, 6.224] [4.89, 5.874] [0.582, 0.646] [0.144, 0.182] [0.182, 0.218] [0.654, 0.711]

MTF-GLP [4.267, 4.634] [4.194, 5.033] [0.673, 0.741] [0.131, 0.162] [0.209, 0.252] [0.64, 0.698]

MTF-GLP-HPM-PP [4.64, 5.234] [4.167, 5.006] [0.674, 0.742] [0.126, 0.158] [0.204, 0.248] [0.648, 0.707]

MTF-GLP-HPM [6.134, 6.641] [4.547, 5.445] [0.554, 0.615] [0.077, 0.106] [0.138, 0.175] [0.749, 0.804]

MTF-GLP-CBD [4.021, 4.372] [4.096, 4.952] [0.692, 0.76] [0.065, 0.077] [0.091, 0.101] [0.831, 0.85]

MSDCNN [3.26, 3.519] [3.369, 3.919] [0.682, 0.764] [0.134, 0.186] [0.189, 0.24] [0.647, 0.724]

TABLE 9. THE DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE WorldView-3 DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [6.01, 7.033] [6.377, 7.9] [0.624, 0.729] [0.043, 0.093] [0.147, 0.205] [0.734, 0.818] 

HIS [5.893, 6.899] [6.57, 8.13] [0.574, 0.685] [0.098, 0.171] [0.154, 0.24] [0.656, 0.769]

Brovey [5.738, 6.791] [5.939, 7.347] [0.593, 0.7] [0.071, 0.118] [0.136, 0.207] [0.713, 0.805]

BDSD [5.215, 6.215] [6.199, 7.666] [0.701, 0.811] [0.036, 0.041] [0.146, 0.178] [0.788, 0.82]

GS [5.557, 6.575] [6.069, 7.468] [0.648, 0.749] [0.046, 0.097] [0.138, 0.201] [0.736, 0.825]

GSA [4.731, 5.617] [5.433, 6.746] [0.719, 0.829] [0.071, 0.126] [0.154, 0.217] [0.699, 0.789]

PRACS [5.075, 5.949] [5.806, 7.21] [0.69, 0.802] [0.028, 0.057] [0.104, 0.141] [0.815, 0.872]

HPF [5.213, 6.109] [5.503, 6.789] [0.69, 0.795] [0.076, 0.134] [0.119, 0.192] [0.718, 0.819]

SFIM [5.093, 5.998] [5.419, 6.698] [0.692, 0.798] [0.072, 0.131] [0.113, 0.188] [0.725, 0.828]

Indusion [5.985, 7.044] [5.918, 7.272] [0.644, 0.743] [0.059, 0.117] [0.108, 0.182] [0.741, 0.844]

ATWT [5.026, 5.87] [5.419, 6.684] [0.703, 0.81] [0.083, 0.139] [0.132, 0.204] [0.703, 0.801]

AWLP [4.969, 5.817] [5.544, 6.83] [0.708, 0.815] [0.057, 0.105] [0.112, 0.179] [0.749, 0.84]

ATWT-M2 [6.233, 7.432] [5.985, 7.43] [0.611, 0.702] [0.088, 0.153] [0.109, 0.169] [0.721, 0.816]

ATWT-M3 [5.955, 6.994] [6.135, 7.619] [0.654, 0.755] [0.076, 0.121] [0.068, 0.104] [0.795, 0.861]

MTF-GLP [4.823, 5.694] [5.34, 6.604] [0.714, 0.821] [0.083, 0.139] [0.136, 0.208] [0.699, 0.797]

MTF-GLP-HPM-PP [4.873, 5.789] [5.284, 6.545] [0.7, 0.814] [0.078, 0.135] [0.13, 0.203] [0.707, 0.806]

MTF-GLP-HPM [6.319, 7.488] [5.748, 7.105] [0.603, 0.695] [0.035, 0.084] [0.062, 0.121] [0.818, 0.907]

MTF-GLP-CBD [4.528, 5.449] [5.094, 6.286] [0.731, 0.839] [0.032, 0.05] [0.072, 0.096] [0.861, 0.898]

MSDCNN [3.068, 3.587] [3.974, 4.814] [0.747, 0.888] [0.069, 0.129] [0.079, 0.119] [0.778, 0.859]
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On the whole, the experiment results show that the pan-
sharpening methods have slightly different performances 
on various remote sensing satellites, especially between 
the four- and eight-band images. Most of the pansharpen-
ing methods have a relatively poorer performance for the 
eight-band images than for the four-band ones. The BDSD 
and MSDCNN methods generally show robust and excel-
lent performance in the reduced- and full-resolution ex-
periments. The MTF-GLP and MTF-GLP-HPM -PP methods 
generally show satisfactory performance in terms of the 
quantitative-evaluation indices in the reduced-resolution 
experiment and poorer performance in the full-resolution 
experiment. Conversely, the MTF-GLP-HPM generally 
shows satisfactory performance in terms of ,Dm  ,Ds  and 
the QNR in the full-resolution experiment and relatively 
poorer performance in the reduced-resolution experiment.

EXPERIMENTAL RESULTS BASED ON DATA SETS FOR 
DIFFERENT THEMATIC SURFACE FEATURES 
The experiment results based on different thematic data 
sets are shown in Figures 12–15 and Tables 10–13, respec-
tively. For each figure, the horizontal axis represents differ-
ent pansharpening methods, and the vertical axis denotes 
the statistical results. In addition, the top five results for 
each evaluation index are marked by dark colors. In the ex-
periments, to avoid the influence of the different spectral 
range coverages between the HR Pan and LR MS images, 
only thematic images from Ikonos, QuickBird, GF-1, and 
WorldView-4 with four-band MS were employed. Therefore, 
305 pairs of HR Pan/LR MS images in the urban data set, 
203 pairs of HR Pan/LR MS images in the green vegetation 
data set, 153 pairs of HR Pan/LR MS images in the water-
scenario data set, and 949 pairs of HR Pan/LR MS images in 
the unlabeled data set were utilized.

As shown in Figure 12 and Table 10, the BDSD and 
MSDCNN methods show excellent performance based on 
the urban data set in the reduced- and full-resolution ex-
periments. The ATWT, MTF-GLP, and MTF-GLP-HPM-PP 
methods show satisfactory results in the reduced-resolution 
experiment and relatively poorer performance in the full-
resolution experiment. Conversely, the MTF-GLP-HPM and 
MTF-GLP-CBD methods have satisfactory performance in 
the full-resolution experiment and poorer performance in 
the reduced-resolution experiment.

Figure 13 and Table 11 provide the experiment results 
based on the green vegetation data set. It is shown that 
the BDSD and MSDCNN methods have excellent perfor-
mance in the reduced- and full-resolution experiments; 
the MSDCNN method has the best results. Similar to the 
results based on the urban data set, the ATWT and MTF-
GLP methods have better results in the reduced-resolution 
experiment, and the MTF-GLP-HPM and MTF-GLP-CBD 
methods achieve better performance in the full-resolution 
experiment.

The experiment results based on the water-scenario data 
set are shown in Figure 14 and Table 12. The performance 

of almost all the pansharpening methods is poorer than 
for the urban and green vegetation data sets, which can be 
observed in the Q2n  index. This is because the edges and 
detailed structures of the images in the water-scenario data 
set are generally missing, and the advantages of the HR 
Pan cannot be comprehensively utilized. In addition, the 
results show that the SFIM, MTF-GLP-HPM-PP, and MTF-
GLP-HPM methods have poor robustness with a wider con-
fidence interval in terms of the ERGAS.

For the unlabeled data set with mixed surface features, 
the BDSD and MSDCNN methods show excellent perfor-
mance, and the MSDCNN has a competitive advantage 
over most of the other pansharpening techniques in the re-
duced- and full-resolution experiments. In addition, simi-
lar to the results based on the water-scenario data set, the 
SFIM, MTF-GLP-HPM-PP, and MTF-GLP-HPM methods 
display poorer robustness in terms of the ERGAS index.

On the whole, the experiment results based on the pro-
posed large-scale thematic data set show that different pan-
sharpening methods have a relatively larger difference for 
various thematic images. In addition, the SFIM, MTF-GLP-
HPM-PP, and MTF-GLP-HPM methods with the same HPM 
high-frequency injection model generally show poorer ro-
bustness.

HETEROGENEITY ANALYSIS OF PANSHARPENING 
METHODS FOR THEMATIC DATA SET
The objective of this article is to more comprehensively 
study the characteristics of pansharpening methods for dif-
ferent thematic remote sensing images. The homogeneity 
and heterogeneity among pansharpening methods for the 
four thematic remote sensing data sets were analyzed and 
discussed. They were measured by the variance among the 
pansharpening methods in terms of different evaluation 
indices. The bigger the variance, the larger the heterogene-
ity of the pansharpening methods for a thematic remote 
sensing data set; the smaller the variance, the more the pan-
sharpening methods are similar. It should be noted that, 
to more comprehensively study this characteristic, all the 
four-band thematic images were pansharpened and ana-
lyzed for each data set; this does not include the previous 
30% data set volume, which was limited by the DL-based 
MSDCNN method. Therefore, the 18 pansharpening meth-
ods without the MSDCNN were used. The results for the re-
duced- and full-resolution data sets are shown in Figures 16 
and 17, respectively.

The distribution of the variance among pansharpen-
ing methods for different thematic data sets based on 
the reduced-resolution images is shown in Figure 16. The 
horizontal axis denotes the sequence number of the im-
ages, and the vertical axis gives the variance values. Fig-
ure 16(a) shows the distribution of the variance for the 
four thematic data sets (i.e., the urban, green vegetation, 
water-scenario, and unlabeled data sets) in terms of the 
ERGAS index. Figure 16(b) and (c) provides the distribu-
tion of the variance in terms of the SAM and Q2n  index, 
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FIGURE 12. The experiment results based on the urban data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respectively, in 
the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 13. The experiment results based on the green vegetation data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respec-
tively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 14. The experiment results based on the water-scenario data set. (a)–(c) The results with the ERGAS, SAM, and Q2n  index, respec-
tively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-resolution experiment.
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FIGURE 15. The experiment results based on the unlabeled data set with mixed surface features. (a)–(c) The results with the ERGAS, SAM, 
and Q2n  index, respectively, in the reduced-resolution experiment. (d)–(f) The results with ,Dm  ,Ds  and the QNR, respectively, in the full-
resolution experiment.
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TABLE 10. DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE URBAN DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [2.206, 2.821] [2.460, 3.118] [0.815, 0.842] [0.039, 0.05] [0.081, 0.104] [0.846, 0.882] 

HIS [2.229, 2.798] [2.564, 3.17] [0.776, 0.802] [0.078, 0.094] [0.101, 0.13] [0.785, 0.827]

Brovey [2.212, 2.76] [2.519, 3.067] [0.782, 0.808] [0.066, 0.082] [0.1, 0.126] [0.799, 0.838]

BDSD [1.804, 2.395] [2.288, 3.024] [0.887, 0.907] [0.022, 0.027] [0.039, 0.053] [0.921, 0.938]

GS [2.131, 2.705] [2.34, 2.96] [0.819, 0.845] [0.041, 0.051] [0.079, 0.105] [0.841, 0.879]

GSA [1.766, 2.332] [2.152, 2.823] [0.88, 0.903] [0.068, 0.088] [0.114, 0.142] [0.782, 0.826]

PRACS [1.725, 2.261] [2.166, 2.845] [0.878, 0.898] [0.035, 0.044] [0.073, 0.09] [0.867, 0.89]

HPF [1.875, 2.39] [2.179, 2.779] [0.862, 0.882] [0.052, 0.07] [0.057, 0.084] [0.852, 0.893]

SFIM [1.862, 2.377] [2.17, 2.771] [0.864, 0.883] [0.052, 0.069] [0.056, 0.082] [0.855, 0.895]

Indusion [2.38, 2.992] [2.348, 2.922] [0.799, 0.821] [0.048, 0.065] [0.043, 0.064] [0.879, 0.91]

ATWT [1.721, 2.21] [2.113, 2.721] [0.881, 0.901] [0.065, 0.082] [0.077, 0.104] [0.822, 0.864]

AWLP [1.759, 2.261] [2.193, 2.781] [0.881, 0.9] [0.06, 0.078] [0.073, 0.099] [0.83, 0.871]

ATWT-M2 [2.411, 2.999] [2.587, 3.246] [0.76, 0.782] [0.039, 0.048] [0.068, 0.086] [0.872, 0.894]

ATWT-M3 [2.285, 2.852] [2.632, 3.303] [0.803, 0.825] [0.052, 0.061] [0.049, 0.067] [0.876, 0.899]

MTF-GLP [1.645, 2.131] [2.079, 2.694] [0.888, 0.908] [0.064, 0.083] [0.08, 0.108] [0.818, 0.861]

MTF-GLP-HPM-PP [1.625, 2.114] [2.074, 2.694] [0.891, 0.911] [0.064, 0.082] [0.079, 0.105] [0.821, 0.863]

MTF-GLP-HPM [2.319, 2.89] [2.339, 2.913] [0.786, 0.804] [0.018, 0.027] [0.059, 0.072] [0.904, 0.923]

MTF-GLP-CBD [1.934, 2.515] [2.307, 2.994] [0.865, 0.892] [0.024, 0.036] [0.036, 0.047] [0.919, 0.94]

MSDCNN [1.677, 2.157] [1.928, 2.385] [0.865, 0.905] [0.028, 0.037] [0.047, 0.065] [0.902, 0.924]

TABLE 11. DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE GREEN VEGETATION DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [1.765, 2.11] [1.938, 2.35] [0.683, 0.732] [0.053, 0.069] [0.174, 0.247] [0.706, 0.777] 

HIS [1.726, 2.046] [1.711, 1.997] [0.55, 0.599] [0.131, 0.156] [0.249, 0.323] [0.577, 0.642]

Brovey [1.635, 1.928] [1.541, 1.786] [0.569, 0.623] [0.111, 0.136] [0.238, 0.31] [0.602, 0.665]

BDSD [1.392, 1.71] [1.571, 1.85] [0.796, 0.823] [0.017, 0.024] [0.061, 0.08] [0.901, 0.92]

GS [1.602, 1.927] [1.701, 1.966] [0.697, 0.741] [0.05, 0.065] [0.173, 0.252] [0.704, 0.783]

GSA [1.505, 1.88] [1.591, 1.911] [0.747, 0.79] [0.064, 0.081] [0.185, 0.268] [0.679, 0.762]

PRACS [1.451, 1.776] [1.609, 1.91] [0.746, 0.786] [0.027, 0.036] [0.132, 0.203] [0.771, 0.843]

HPF [1.379, 1.665] [1.467, 1.712] [0.764, 0.794] [0.056, 0.07] [0.085, 0.108] [0.832, 0.862]

SFIM [1.388, 1.689] [1.463, 1.705] [0.765, 0.794] [0.056, 0.07] [0.084, 0.107] [0.833, 0.863]

Indusion [1.704, 2.035] [1.662, 1.902] [0.686, 0.724] [0.052, 0.065] [0.065, 0.083] [0.858, 0.885]

ATWT [1.341, 1.624] [1.432, 1.684] [0.777, 0.806] [0.067, 0.081] [0.112, 0.14] [0.793, 0.827]

AWLP [1.424, 1.718] [1.624, 1.968] [0.769, 0.799] [0.053, 0.064] [0.088, 0.118] [0.829, 0.862]

ATWT-M2 [1.434, 1.691] [1.596, 1.834] [0.728, 0.766] [0.053, 0.071] [0.072, 0.094] [0.844, 0.879]

ATWT-M3 [1.438, 1.691] [1.686, 1.941] [0.748, 0.781] [0.046, 0.067] [0.077, 0.094] [0.849, 0.877]

MTF-GLP [1.313, 1.602] [1.41, 1.667] [0.782, 0.812] [0.069, 0.084] [0.118, 0.148] [0.784, 0.819]

MTF-GLP-HPM-PP [1.338, 1.771] [1.409, 1.663] [0.782, 0.812] [0.069, 0.083] [0.117, 0.146] [0.785, 0.82]

MTF-GLP-HPM [1.408, 1.687] [1.485, 1.719] [0.741, 0.778] [0.021, 0.029] [0.057, 0.07] [0.904, 0.921]

MTF-GLP-CBD [1.534, 1.934] [1.566, 1.885] [0.76, 0.797] [0.025, 0.034] [0.044, 0.057] [0.912, 0.933]

MSDCNN [1.068, 1.626] [1.216, 1.543] [0.78, 0.836] [0.039, 0.05] [0.048, 0.059] [0.896, 0.911]
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TABLE 12. DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE WATER-SCENARIO DATA SET.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [2.299, 3.528] [2.443, 1.847] [0.452, 0.546] [0.101, 0.139] [0.213, 0.28] [0.629, 0.706] 

HIS [1.381, 1.871] [0.122, 0.805] [0.499, 0.604] [0.189, 0.253] [0.306, 0.396] [0.465, 0.568]

Brovey [1.395, 1.895] [0.087, 0.75] [0.502, 0.606] [0.141, 0.194] [0.272, 0.359] [0.528, 0.628]

BDSD [1.56, 2.232] [0.21, 0.922] [0.568, 0.668] [0.064, 0.084] [0.061, 0.086] [0.843, 0.874]

GS [1.51, 2.155] [0.298, 0.981] [0.503, 0.606] [0.086, 0.113] [0.217, 0.284] [0.641, 0.714]

GSA [1.362, 1.973] [0.118, 0.772] [0.559, 0.675] [0.101, 0.136] [0.23, 0.296] [0.616, 0.693]

PRACS [1.262, 1.709] [0.076, 0.701] [0.588, 0.695] [0.051, 0.07] [0.156, 0.212] [0.736, 0.8]

HPF [1.59, 2.248] [0.115, 0.788] [0.55, 0.648] [0.135, 0.173] [0.192, 0.267] [0.614, 0.704]

SFIM [3.885, 78.517] [0.464, 1.003] [0.537, 0.626] [0.132, 0.171] [0.189, 0.265] [0.617, 0.71]

Indusion [1.839, 2.609] [0.23, 0.919] [0.513, 0.603] [0.115, 0.156] [0.178, 0.243] [0.646, 0.733]

ATWT [1.544, 2.184] [0.119, 0.785] [0.557, 0.656] [0.142, 0.179] [0.207, 0.282] [0.597, 0.686]

AWLP [1.620, 2.331] [0.134, 0.778] [0.583, 0.685] [0.153, 0.196] [0.214, 0.293] [0.577, 0.673]

ATWT-M2 [1.416, 1.957] [0.111, 0.762] [0.566, 0.671] [0.163, 0.206] [0.188, 0.24] [0.609, 0.681]

ATWT-M3 [1.501, 2.092] [0.114, 0.767] [0.578, 0.683] [0.131, 0.17] [0.126, 0.174] [0.692, 0.759]

MTF-GLP [1.293, 1.869] [0.125, 0.739] [0.582, 0.69] [0.136, 0.175] [0.221, 0.293] [0.59, 0.679]

MTF-GLP-HPM-PP [8.758, 48.768] [0.647, 1.036] [0.564, 0.662] [0.133, 0.174] [0.217, 0.291] [0.594, 0.685]

MTF-GLP-HPM [4.747, 13.646] [0.174, 0.837] [0.526, 0.614] [0.079, 0.108] [0.115, 0.171] [0.744, 0.817]

MTF-GLP-CBD [1.487, 2.284] [0.137, 0.7] [0.618, 0.741] [0.056, 0.081] [0.107, 0.149] [0.784, 0.845]

MSDCNN [1.184, 1.804] [0.798, 1.153] [0.483, 0.626] [0.095, 0.118] [0.054, 0.07] [0.824, 0.849]

TABLE 13. DETAILED STATISTICAL RESULTS, WITH A 95% CONFIDENCE INTERVAL, BASED ON THE UNLABELED DATA SET WITH 
MIXED SURFACE FEATURES.

METHOD

REDUCED RESOLUTION FULL RESOLUTION

ERGAS SAM Q2N-INDEX Dm Ds QNR

PCA [2.329, 2.682] [2.922, 3.446] [0.69, 0.724] [0.068, 0.079] [0.185, 0.225] [0.721, 0.762] 

HIS [2.003, 2.216] [2.067, 2.282] [0.61, 0.638] [0.147, 0.16] [0.252, 0.281] [0.609, 0.639]

Brovey [1.911, 2.108] [1.885, 2.075] [0.628, 0.655] [0.128, 0.139] [0.235, 0.262] [0.639, 0.667]

BDSD [1.633, 1.827] [1.904, 2.115] [0.802, 0.82] [0.025, 0.029] [0.058, 0.067] [0.908, 0.918]

GS [1.948, 2.174] [2.12, 2.382] [0.709, 0.735] [0.073, 0.083] [0.187, 0.219] [0.721, 0.755]

GSA [1.681, 1.882] [1.86, 2.059] [0.777, 0.799] [0.085, 0.098] [0.183, 0.209] [0.719, 0.75]

PRACS [1.564, 1.746] [1.774, 1.965] [0.795, 0.814] [0.036, 0.042] [0.112, 0.128] [0.837, 0.856]

HPF [1.702, 1.897] [1.769, 1.956] [0.754, 0.777] [0.092, 0.103] [0.127, 0.144] [0.771, 0.794]

SFIM [1.526, 3.34] [1.769, 1.957] [0.756, 0.779] [0.092, 0.104] [0.125, 0.142] [0.773, 0.796]

Indusion [2.094, 2.318] [1.986, 2.181] [0.688, 0.713] [0.093, 0.105] [0.089, 0.104] [0.805, 0.826]

ATWT [1.649, 1.842] [1.736, 1.923] [0.764, 0.788] [0.105, 0.116] [0.157, 0.176] [0.732, 0.757]

AWLP [1.707, 1.917] [1.834, 2.041] [0.768, 0.79] [0.097, 0.108] [0.143, 0.161] [0.752, 0.776]

ATWT-M2 [1.781, 1.972] [1.952, 2.156] [0.745, 0.761] [0.064, 0.075] [0.083, 0.095] [0.84, 0.859]

ATWT-M3 [1.774, 1.963] [2.014, 2.221] [0.76, 0.775] [0.067, 0.079] [0.072, 0.083] [0.848, 0.867]

MTF-GLP [1.618, 1.812] [1.715, 1.902] [0.771, 0.795] [0.107, 0.119] [0.164, 0.182] [0.725, 0.749]

MTF-GLP-HPM-PP [1.751, 3.483] [1.716, 1.907] [0.772, 0.797] [0.107, 0.119] [0.161, 0.18] [0.727, 0.751]

MTF-GLP-HPM [1.925, 3.42] [1.814, 2.005] [0.748, 0.766] [0.042, 0.051] [0.062, 0.073] [0.882, 0.898]

MTF-GLP-CBD [1.848, 2.075] [1.877, 2.098] [0.777, 0.797] [0.034, 0.039] [0.056, 0.064] [0.9, 0.912]

MSDCNN [1.449, 1.721] [1.663, 1.884] [0.806, 0.834] [0.039, 0.045] [0.052, 0.058] [0.9, 0.91]
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respectively. It is shown that the distribution of the vari-
ances in the urban data set is relatively consistent in terms 
of the ERGAS, SAM, and Q2n  index, and the variance 
values are small. This indicates that the performance of 
different pansharpening methods for building-oriented 
remote sensing images is similar. For the images in the 
green vegetation and water-scenario data sets, the dis-
tribution of the variances is scattered, and the variance 
values are relatively large. In addition, for the unlabeled 
data set with mixed surfaces, the heterogeneity among 
the pansharpening methods is the largest. This indicates 
that different pansharpening methods have a more ob-
vious difference for the green vegetation, water-oriented, 
and mixed-surface images.

In addition, heterogeneity analysis based on full-reso-
lution images was implemented; it is shown in Figure 17. 
The first column denotes the distribution of the variance 
for different thematic data sets in terms of .Dm  The second 
and third columns describe the distribution for different 
thematic data sets in terms of Ds  and the QNR, respec-
tively. It can be seen that, for the urban data set, most of 
the variances are small, and their distribution is consistent. 
This indicates that different pansharpening methods have 
a robust performance for building scenes. For the green 
vegetation and water-scenario data sets, the distribution 
of the variance of almost all the evaluation indices is rela-
tively scattered. This indicates that, on the one hand, there 
is a relatively larger performance difference for the various 
pansharpening methods. On the other hand, it is relatively 
more sensitive in spectral fidelity and spatial enhancement 
for the green vegetation and water scenes compared with 
the building scenes. Overall, this is consistent with the re-
sults based on the reduced-resolution data sets.

DISCUSSION
This article proposed a large-scale data set for pansharp-
ening, and the performance of 19 popular pansharpening 
methods was evaluated based on the proposed data set.
1)	 Contrary to the existing assessment that depends on a 

few images, the pansharpening methods were evalu-
ated based on large numbers of remote sensing images 
from different satellites and with typical thematic sur-
face features.

2)	 The experiment results show that pansharpening meth-
ods have relatively different performance for various re-
mote sensing satellite images and thematic images. On 
the whole, the BDSD and MSDCNN methods generally 
show excellent performance in quantitative evalua-
tion. The SFIM, MTF-GLP-HPM, and MTF-GLP-HPM-
PP methods are unstable due to the common HPM 
spatial-detail injection scheme. This is because the HPM 
may introduce outliers in some cases. Specifically, for 
the HPM, the HR Pan is first matched to the MS based 
on moment matching to remove the radiation differ-
ence, and the matched Pan image Pu  is divided by its low-
pass version Plu  to calculate the spatial-detail injection 

weight, represented as P P/ .lu u  For most cases, the preced-
ing two-step operations contribute to the improvement 
of the pansharpening methods; however, matched Pan 
images that have many negative values generally lead to 
some pixel values closing to zeros in the P ,lu  and then the 
outliers are generally introduced. In addition, the exper-
iment results show a superior performance for the DL-
based MSDCNN method. Although this cannot com-
pletely represent the performance of all the DL-based 
pansharpening methods, it shows their advantages to 
some extent.

3)	 The experiment results show that inconsistent perfor-
mance exists among some quantitative-evaluation in-
dices. For the MSDCNN in the Ikonos experiment, the 
SAM shows excellent results; however, the ERGAS and 
Q2  indexn  show relatively poorer performance. This is 
because quantitative-evaluation indices have different 
emphases on the evaluation. On the one hand, some 
evaluation indices focus on spatial-quality assessment, 
and others put emphasis on spectral distortion evalu-
ation. On the other hand, quantitative-evaluation in-
dices generally consider different factors. For example, 
the ERGAS mainly assesses the overall radiation differ-
ence between the fused image and the reference image, 
and the SAM evaluates the distortions of the inner-
band relations. Therefore, a comprehensive analysis of 
several evaluation indices is necessary for the perfor-
mance assessment of pansharpening methods. Effec-
tive and robust comprehensive quality evaluation for 
pansharpening should be further studied, especially the 
nonreference quantitative-evaluation methods.

4)	 To date, pansharpening methods have been developed 
for nearly 40 years, and a large number of them have  
been proposed. Moreover, many CS- and MRA-based 
pansharpening methods have been commercialized 
in professional remote sensing software. However, 
there are still some essential and urgent problems to be 
solved.

•• Application-oriented pansharpening methods 
should be given attention. Pansharpening is gener-
ally a fundamental processing progress in various 
applications, and different applications may have 
contrasting requirements for high spectral fidelity 
and high spatial-detail enhancement. Therefore, ap-
plication-oriented pansharpening methods should 
be developed.

•• Robustness-oriented pansharpening methods should 
be devised. The experiment results based on the 
large-scale data set in this article show that most of 
the pansharpening methods may have high accuracy 
for some images and poor performance in the case of 
other images, such as those from different thematic 
scenarios. Therefore, robust pansharpening methods 
for different thematic scenarios, misregistration, dis-
parate imaging times, noise, cloud contaminations, 
and so forth should be studied.
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•• DL-based pansharpening methods have been at-
tracting ever-increasing attention in recent years, 
and they generally have high precision. However, 
they are limited by the large-scale data set, and 
time-consuming network training is also generally 
performed again for various tasks, such as different 
remote sensing satellites and thematic scenarios. 
Therefore, robust, adjustable DL-based methods 
should be researched.

5)	 Finally, this article proposed a large-scale benchmark 
data set for pansharpening, and this can contribute to 
research in many aspects.

•• The proposed large-scale data set can be utilized to 
comprehensively assess the performance of pan-
sharpening methods.

•• The data set can be used to develop new pansharp-
ening methods, especially data-driven pansharpen-
ing approaches such as DL-based techniques.

•• The data set will assist researchers, especially those 
who have difficulty obtaining very-high-resolution 
remote sensing images.

CONCLUSIONS
This article presented a large-scale benchmark data set 
for performance evaluation of pansharpening methods. 
The proposed data set has 2,270 pairs of HR Pan/LR MS 
images. To assist researchers, the proposed data set was 
grouped in two ways, i.e., different remote sensing satellites 
and typical thematic surface features. The data set for the 
different remote sensing satellites consists of 200 pairs of 
Ikonos, 500 pairs of QuickBird, 410 pairs of GF-1, 500 pairs 
of WorldView-4, 500 pairs of WorldView-2, and 160 pairs of 
WorldView-3 HR Pan/LR MS images. The thematic data set 
is composed of the urban data set with 510 pairs of HR Pan/
LR MS images, the green vegetation data set with 258 pairs 
of HR Pan/LR MS images, the water-scenario data set with 
318  pairs of HR Pan/LR MS images, and the unlabeled 
data set with mixed surface features and 1,184 pairs of HR 
Pan/LR MS images. In addition, this article reviewed pan-
sharpening methods, including the CS-, MRA-, VO-, and 
DL-based approaches. Finally, 19 pansharpening methods 
were evaluated and statistically analyzed based on the pro-
posed data set.
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